

Script-Based Mobile Threats

Mark Kennedy
Symantec AntiVirus Research Center
Tuesday, June 27, 2000
mkennedy@symantec.com

Mark Kennedy Page 2 of 27 6/27/2000

Table of Contents

Table of Contents .. 2
Abstract ... 3
Windows Scripting Host: Myths and Realities .. 4

Choose Your Playing Field ... 6
Objects: The Source of the Power.. 7

The Scripting.FileSystemObject ... 7
The WScript.Shell Object ... 9
The WScript.Network Object.. 11
Outlook As Transportation Mechanism .. 11
The Scriptlet.Typelib Object ... 12

Case Studies .. 13
VBS.BubbleBoy.. 13
VBS.Network .. 15
Wscript.Kak... 16
VBS.LoveLetter .. 17

VBS.LoveLetter Variants.. 18
VBS.NewLove – Destruction Has A New Name ... 19
VBS.Stages.A The New Worm On The Block .. 20

A Firewall For Scripts ... 21
COM – The Plumbing That Makes It Work ... 21
Heuristic Approach To Firewall.. 22
Run Time Approach To Firewall .. 23
False Positives or The Software That Cried Wolf... 23
So What Do We Do About Good Scripts?.. 24
Signatures and Scripts ... 25

Conclusion... 25
Figures... 27
Tables .. 27

Mark Kennedy Page 3 of 27 6/27/2000

Abstract
Microsoft has created a very flexible, powerful environment on its Win32 platforms. The
combination of simple scripting languages coupled with powerful objects through the
common interface of COM makes it possible to create fully functional business
applications by relatively unsophisticated programmers. Moreover, Microsoft has
extended these tools to run from HTML, making deployment of these applications very
inexpensive.

The down-side to this power and flexibility is that it is now possible for malicious people
to utilize this same technology to attack machines. Exacerbating this threat is standard
HTML-based email programs that will execute these scripts. This allows the perpetrator
to deliver his package anonymously, and for that package to propagate utilizing the
victim's own email address book.

To combat this threat we can inject an intelligent layer, a script firewall if you will, to
determine which scripts are allowed to execute. This layer can be customized to the
individual or organization to balance the business requirements against the security
implications. This paper will explore the difficulties of building a script behavior
blocking system and examine how effective such a system is against today's malicious
threats.

Mark Kennedy Page 4 of 27 6/27/2000

Windows Scripting Host: Myths and Realities

Anyone not living under a rock for the past few months knows that the hot topic, at least
as far as the media are concerned, is script-based worms. Below are a number of
clippings regarding some of the more infamous examples.

Copycat viruses
following
'ILOVEYOU'
computer bug are no
joke

May 4, 2000

 (CNN) -- Hours after
the self-propagating and
destructive
"ILOVEYOU" virus
destroyed critical files
and jammed countless
electronic mail systems,
computer network
administrators battled at
least one copycat virus
dubbed "very funny."
"There'll be hundreds of
these maybe
thousands."

New computer virus
more destructive, but
appears less infectious

May 19, 2000

(CNN)"Otherwise, it's
totally new code. But
there's a common idea.”
Rather than the same
subject line each time,
"NewLove" is
polymorphic. Each
time, it takes the name
of a recently accessed
file on the user's
machine and uses that
name, along with
"FW:". This can work
much better than
"ILOVEYOU," because
users can't be on the
lookout for a specific
subject line. Instead, the
subject line may be a
file name that is trusted
-- especially among co-
workers.
"It's really quite clever.”

Viruses boom on the
Net

January 18, 2000
by Mark Leon

(CNN)The reasons for
concern do not stop
there. Not only do the
unscrupulous have a
bigger field to play in,
they also have tools that
are easier to use and
potentially more
dangerous.
"The advent of macro
and script viruses --
viruses written in Macro
languages such as Word
Macro and VBScript --
makes it fairly easy to
write new ones.”
"This is mobile code.
As it becomes easier to
use, we will see more
mobile virus code.”

'Bubbleboy' e-mail
virus benign, but also
a warning
By JOHN FONTANA
Network World,
11/15/99
The recently discovered
"Bubbleboy" e-mail
virus probably won't be
causing any headaches
for IT executives, but
they better ready their
defenses for his
offspring.
Bubbleboy variants will
have the ability to
spread faster than the
Melissa virus, which ate
up corporate e-mail
systems earlier this
year. The most
frightening aspect of the
new worm, researchers
say, is that users do not
have to open an
attachment to activate
it, which was the trigger
for Melissa.

Table 1 News Clips

The press and others have grossly misreported the techniques and susceptibilities of these
script-based attacks. There are two scripting languages widely available on today’s
Windows machines: VBScript and JavaScript. Both are nearly identical in power and
syntax. A program written in one can be translated to the other in a matter of hours. The
Windows Scripting Host determines which language a piece of script is written in and
calls the appropriate interpreter. The most important thing to understand is that by
itself the Windows Scripting Host is totally incapable of doing harm. The primitives

Mark Kennedy Page 5 of 27 6/27/2000

of the languages (both VBScript and JavaScript) have no ability to affect the File System,
the Registry, or Outlook. They do, however, have the ability to leverage COM objects
and ActiveX controls residing on the system and through them wreak havoc.

To understand worm behavior, there are two basic aspects to keep in mind:

• Arrival: The means by which the worm activates on the victim’s machine.
• Departure: How the worm moves on.

Arrival is accomplished when the script code is executed on the victim’s machine. Script
can be hosted in a number of forms and can be activated in a number of ways, some
automatic.

Departure has mainly been via Outlook’s automation capability (Wscript.Kak and
VBS.Network are exceptions to this). The Outlook object can enumerate the Outlook
Address Book and send e-mail, including e-mail with attachments. The worms are able to
spread by taking advantage of this object.

Stand-alone script code such as VBS.LoveLetter comes in an attachment. This file, by
means of its extension will, when launched, cause the script to be executed. Stand-alone
script may be “encoded” by utilizing a tool from Microsoft. Encoding turns the script
into a quasi-encrypted binary form that the scripting engine can reverse. This is a simple
form of obfuscation. Stand-alone script requires that the victim launch the
attachment or file.

Embedded script is script code that is embedded within HTML. This script code can be
located inside a web page or as the body of an HTML email message. This script code
will execute the moment it is viewed. Thus script code arriving in an HTML email
message will execute if the victim merely views the message in a preview pane. The
victim will have no idea that code has executed other than possibly a security popup
message from the reader. Embedded script can also be “encoded” using the same
technique previously described. More recent revisions of Outlook Express have disabled
all script objects from within email bodies.

In the recent outbreaks, the media has continually expressed the mistaken belief that only
people running Outlook were at risk. Nothing could be further from the truth. Outlook is
the mechanism that allows some of the worms to spread. Any email program that could
launch attachments would have been sufficient to deliver the payload (in
VBS.NewLove’s case complete destruction of the machine). For example, Lotus Notes
has an option launch attachments. It was not important how the worm was launched only
that the worm was launched.

Script-based worms are effective, easy to write, and occasionally deadly. They are
usually followed by a slew of variants due to the fact that they are delivered with source
code. Due to the ready availability of sample code and the simplicity of the languages
little skill is required to generate the original, and virtually none for the knock offs. As a

Mark Kennedy Page 6 of 27 6/27/2000

matter of fact, virtually all of the major worms have at their core sample code which can
be located on the Microsoft web site.

Because scripts can be executed from a wide array of formats, the Virus/Worm writer can
choose his method of delivery. Some do not even require the victim to do anything more
than preview the host message. From stand-alone .VBS files to embedded HTML to
OLE compound documents the avenues of ingress for script seem almost limitless. This
multitude of paths seriously compromises the scanning based methods of dealing with
potential threats. Almost any file can contain executable script.

Choose Your Playing Field

"By the end of last year, there were more than 200 million PCs connected
to the Internet. Ninety percent of these are Windows machines running
the same applications, such as Word, Microsoft Exchange, and Excel. For
the first time, we have a computing monoculture. Monocultures in the
natural world are extremely vulnerable to pests such as viruses."

-- Carey Nachenberg, Chief Researcher at Symantec's Anti-virus Research
Center

Script can utilize many objects on Windows machines. Some are part of the operating
system and provide a known arena in which to play. Others are prevalent enough to allow
for wide coverage. The Virus/Worm writer can choose which of these objects to use and,
thus, determine how wide an audience to attack.

The homogeneous Windows machine makes it fairly easy to predict how a worm written
on one machine will behave on another. The more generically written the worm, the
better it will spread. Scripting even provides functions to abstract out the differences in
directory structure that might be encountered. Some the Virus/Worm writers have utilized
this capability and, in the process, have written code that is more robust than some
“professional” code.

When Microsoft made the decision to allow Windows to be scriptable, they foresaw these
variations in installations. They wanted to provide a powerful, flexible ability to
automate certain tasks. Additionally, they wanted to provide this flexibility in their
Office applications. Microsoft achieved their goal. Simple scripts can be written by non-
sophisticated users to accomplish a wide variety of tasks.

In their never ending quest for flexibility, Microsoft allowed these same scripting engines
to be hosted in HTML. This allows scripts to execute via Web pages and HTML email.
Either by design or oversight there is no distinction between script running in a local
source file and script running in a spam email. What started as a tool for a local
administrator has now become portal for the unscrupulous.

Mark Kennedy Page 7 of 27 6/27/2000

Script can also be embedded in OLE compound documents. Worms have been attached
to help files with this method. VBS.Stages.A is a new generation worm that takes
advantages of a number of quirks in the Windows operating system. For example,
Windows will show the extension .SHS despite the user choosing to display all
extensions.

Objects: The Source of the Power

Fortunately, the base scripting languages do not have the ability to affect the system on
their own. They have no persistent storage. In order to reach out and manipulate the
operating system they must make use of objects. Most of these objects were provided for
just this purpose. The number of the objects is, however, limited. These limitations
provide the necessary choke point that allows blocking them before they can do any
damage.

Before the worm can interact with the system, it must create an instance of the object. It
then calls methods in that object to attempt its task. If that object does not comply with
what the worm wants done, there is no recourse. The worm is stopped and rendered
harmless. Because most scripts that reside on web pages do not attempt to make use of
these objects (at least not legitimate script), restricting access to these objects poses few
problems.

The objects most used by worms are the Scripting.FileSystemObject (FSO) object, the
WScript.Shell object, the WScript.Network, and the Outlook.Application. The first three
exist on all machines running the Windows Scripting host. The Outlook.Application
object is only present if the target machine has Outlook installed. This reduces the
number of viable targets, but facilitates easy spreading.

Assisting the Virus writer in his work are the numerous example programs and code
snippets provided by Microsoft. A few minutes perusing their website or scanning the
examples provided with the operating system will yield virtually all of the framework
used by the various script based worms in the wild today.

The Scripting.FileSystemObject

The Scripting.FileSystemObject (FSO) provides complete access to the file system. It
consists of powerful methods for manipulating the file system, including methods to
abstract out those portions that might vary among Windows installations, such as the
Windows directory. Table 2 shows a subset of the methods provided. All of the major
script-based worms make use of this object. Minimally, it is used to place a copy of itself
in some specific location so it would be run on system startup. Some used it to do
damage.

The GetSpecialFolder method is the means to allow for variations in system installation.
It returns the Windows folder (generally C:\Windows or C:\Winnt), the System folder

Mark Kennedy Page 8 of 27 6/27/2000

(generally C:\Windows\System or C:\Winnt\System32) or the temporary folder. The first
two directories are always on the Windows path (meaning a non-qualified launch will
always find them). Additionally, users are not likely to examine these folders. In fact,
newer versions of Windows actually prevent the user from examining either of these
options unless they bypass a somewhat intimidating warning. This, coupled an official
sounding name for the worm, such as WIN32DLL.VBS, insures that only the brave of
heart would dare remove it.

Language Element Description
BuildPath Appends a name to an existing path.
Close Closes an open TextStream file.
CopyFile Copies one or more files from one location to another.
CopyFolder Recursively copies a folder from one location to another.
CreateFolder Creates a folder.
CreateTextFile Creates a specified file name and returns a TextStream object

that can be used to read from or write to the file.
DeleteFile Deletes a specified file.
DeleteFolder Deletes a specified folder and its contents.
DriveExists Returns True if the specified drive exists; False if it does not.
FileExists Returns True if a specified file exists; False if it does not.
FolderExists Returns True if a specified folder exists; False if it does not.
GetAbsolutePathName Returns a complete and unambiguous path from a provided path

specification.
GetBaseName Returns a string containing the base name of the file (less any file

extension), or folder in a provided path specification.
GetDrive Returns a Drive object corresponding to the drive in a specified

path.
GetExtensionName Returns a string containing the extension name for the last

component in a path.
GetFileName Returns the last file name or folder of a specified path that is not

part of the drive specification.
GetFolder Returns a Folder object corresponding to the folder in a

specified path.
GetSpecialFolder Returns the special folder specified.
GetTempName Returns a randomly generated temporary file or folder name.
Move Moves a specified file or folder from one location to another.
MoveFile Moves one or more files from one location to another.
MoveFolder Moves one or more folders from one location to another.
OpenTextFile Opens a specified file and returns a TextStream object that can

be used to read from, write to, or append to the file.
Read Reads a specified number of characters from a TextStream file

and returns the resulting string.

Mark Kennedy Page 9 of 27 6/27/2000

ReadAll Reads an entire TextStream file and returns the resulting string.
ReadLine Reads an entire line (up to, but not including, the newline

character) from a TextStream file and returns the resulting
string.

Remove Removes a key, item pair from a Dictionary object.
RemoveAll Removes all key, item pairs from a Dictionary object.
Skip Skips a specified number of characters when reading a

TextStream file.
SkipLine Skips the next line when reading a TextStream file.
Write Writes a specified string to a TextStream file.
WriteLine Writes a specified string and newline character to a TextStream

file.

Table 2 Partial Scripting.FileSystemObject Reference1

There is one important note to the FSO and the files it reads, writes, or creates: they need
not be text based. Although the documentation and the examples show them as being
“Text” they are only strings. Strings in script can consist of binary values and as such
can be used to read and write binary files. By this means, a script can drop and then
execute a .EXE file. Scripts have moved into the world of EXE based worms and/or
viruses. It should be noted that script carrying the ASCII based form of an executable
would significantly larger than that executable. In low bandwidth areas this may provide
a significant impediment to spreading.

The WScript.Shell Object

We have seen that the FSO has laid bare the file system of Windows based machines.
This leaves out the other piece of the Windows system: the Registry. Not to worry.
Microsoft added the WScript.Shell object. Table 3 shows subset of the methods provided
by this object.

Language Element Description

ConnectObject Connects an objects event sources to functions with a given
prefix.

CreateObject Creates an object specified by the strProgID parameter.

CreateShortcut Creates an object reference to a shortcut or URLshortcut.

ExpandEnvironmentStrings Expands the PROCESS environment variable and returns
the result string.

RegDelete Deletes from the registry the key or value named strName.

RegRead Returns the registry key or value named by strName.

RegWrite Sets the registry key or value named by strName.

1 http://msdn.microsoft.com/scripting/jscript/doc/jsfsoTOC.htm

Mark Kennedy Page 10 of 27 6/27/2000

Remove Deletes the environment variable specified by strName.

Run Creates a new process that executes strCommand.

Save Saves a shortcut to the specified location.

SendKeys Sends one or more keystrokes to the active window as if
typed at the keyboard.

Sleep Places the script process into an inactive state for the
number of milliseconds specified and then continues
execution.

SpecialFolders Accesses the Windows shell folders such as the desktop
folder, the Start menu folder, and the personal document
folder.

Table 3 Partial List of the WScript.Shell Object Methods2

With WScript.Shell, the Virus/Worm writer has access to the Windows Registry
another place where most users fear to tread. By setting an entry into the
HKLM\Software\Microsoft\Windows\CurrentVersion\Run key, the worm can ensure it
gets run on each boot. Again, a sufficiently frightening name prevents users from
considering deleting it.

The Run method launches any program. It can even launch a program in a hidden state.

The SendKeys method can be used to drive the application once started. This could be
used to mask suspicious behavior by driving a proper application to do bad things.
Examples of this have been seen in the macro virus world. Some macro viruses have
spread by sending the keyboard commands to Cut and Paste themselves from one
document to another. This is done to defeat heuristic detection of macro copy.

If destruction is the intent then the Run, RegWrite, and RegDelete methods answer the
call. Running a “format” or “deltree” command wipes out masses of files. Deleting or
modifying important Registry keys can render a system just as useless.

Some of the worms have used the RegWrite method to childishly set the Internet
Explorer home page to a sex site or otherwise deface the victim’s machine

Access to network drives gives a stealthy avenue to spreading. Mapped drives can be
examined to see if they appear to be other boot drives. If so, placing a copy of the worm
in the appropriate folder will cause it to be launched when that machine next reboots.
This is precisely what VBS.Network does.

The SpecialFolders object been used to look for file names off of the user’s system. By
checking the “Recent” location you can get the name of a real document the user recently
used. VBS.NewLove used a flawed version of this to create its new subject line and

2 http://msdn.microsoft.com/scripting/default.htm?/scripting/windowshost/doc/wsObjWscript.htm

Mark Kennedy Page 11 of 27 6/27/2000

attachment name. This meant that, potentially, every copy of VBS.NewLove could have
had a different subject line and attachment name, making it difficult to come up with
mechanism to recognize the attack.

The WScript.Network Object

There is an additional object specifically for dealing with the network. This object allows
mapping arbitrary network drives as well, as enumerating the drives that are already
mapped. Because the format of the network drive is in UNC, any IP address could be
attempted. Using this method, a worm could spread without the aid of an email program.
The VBS.Network worm does just that. Based on the sample file included on Windows
98 and with the Windows Scripting Host, it seeks out network drives and infects them.

Language Element Description
EnumNetworkDrives Returns the current network drive mappings.

MapNetworkDrive Maps the share point specified by strRemoteName to the local
resource name strLocalName.

RemoveNetworkDrive Removes the current resource connection denoted by strName.

Table 4 Partial List of WScript.Network Object Methods3

Outlook As Transportation Mechanism

Why is Outlook such a popular target? The answer to this is three fold. First, there are
many examples of how to drive Outlook and how it works. As mentioned before, the
source to these worms is distributed making cutting and pasting simple (one .EXE based
worm even used script to send itself because the Virus/Worm writer did not know COM
and using script was easy).

The second reason is Outlook is easy for Virus/Worm writers to acquire. Conversely,
Lotus Notes, which could be driven via agents, requires a certain knowledge of Notes and
access to the program. Most Virus/Worm writers do not have Notes and a Notes server
running on their local machines. Because of this, it is more difficult to write and test a
worm that makes use of Notes.

Lastly, Outlook provides powerful methods via scripting. You can enumerate the address
book (or books) to find email addresses. You can enumerate the Inbox to find out who
has sent email and return mail to them. You can enumerate the Sent box and provide
follow-up. All of these answer a key need of the worm: How do I find new targets to
infect? Outlook provides a ready set of valid email addresses. It provides valid and
varying subject lines. In short, it offers both the target’s name and a modifiable method
for looking normal all to entice the next victim into opening the mail or attachment
and, thereby, spreading the worm.

3 http://msdn.microsoft.com/scripting/windowshost/doc/wsObjWshNetwork.htm

Mark Kennedy Page 12 of 27 6/27/2000

Microsoft provides excellent examples of how to drive Outlook via scripting and Visual
Basic for Applications (VBA), the language Office application’s macros are written in.
Figure 1 is the example Microsoft provides for enumerating the Outlook Addressbook.
This is virtually identical to the code found in the Outlook replicating worms, including
W97M.Melissa.

Sub RetrievePAB()
Dim aPAB() As Variant
Dim adl As Outlook.AddressList
Dim e As Outlook.AddressEntry
Dim i As Integer

ReDim aPAB(100, 2)

Set nsMAPI = ol.GetNamespace("MAPI")
'Return the personal address book.
Set adl = nsMAPI.AddressLists("Personal Address Book")

'Loop through all entries in the PAB
' and fill an array with some properties.
For Each e In adl.AddressEntries

'Display name in address book.
aPAB(i, 0) = e.Name
'Actual e-mail address
aPAB(i, 1) = e.Address
'Type of address ie. internet, CCMail, etc.
aPAB(i, 2) = e.Type
i = i + 1

Next
ReDim aPAB(i - 1, 2)

End Sub

Figure 1 Microsoft's sample code for enumerating the Outlook Addressbook4

The Scriptlet.Typelib Object

The scriptlet object was intended to generate Type Libraries for Windows Script
Components. The BubbleBoy author discovered that the object could be used to create
arbitrary content in an arbitrary file. Table 5 shows a partial list of the methods provided
by this object.

Language Element Description
Path The file name for the type library, which can optionally include a

path.

Doc A string containing any information that is stored in the registry
with the type library information.

Write Write the current type library.

Table 5 Partial List of Scriptlet.Typelib Object's Methods5

4 http://msdn.microsoft.com/library/techart/msdn_movs105.htm

Mark Kennedy Page 13 of 27 6/27/2000

Case Studies

Now that the main players have been introduced, we can take a look at the role these
objects have played in some of the most infamous worms. We will also examine some of
the variants and how easily they were constructed.

VBS.BubbleBoy

WARNING: If you get an E-mail titled: "Win A Holiday". DO NOT
open it. Delete it immediately. Microsoft just announced yesterday. It
is a malicious virus that WILL ERASE YOUR HARD DRIVE.
At this time there is no remedy. Forward this to everyone
IMMEDIATELY!!
 -- SARC Hoax Database

Prior to November 1999, messages about viruses that spread merely by opening the
message were urban legends. VBS.BubbleBoy changed that. By making use of both a
security hole and a design flaw in the Scriptlet.TypeLib object, VBS.BubbleBoy was able
to create an arbitrary file in an arbitrary directory. Then, by leveraging Microsoft’s own
security policy regarding scriptable objects it was able to activate objects without the
warning that would ordinarily be generated.

The ramifications of this were staggering. For the first time an email message could
infect a machine simply by being read or, for that matter, viewed in the preview pane.
This development turned the hoax above into reality.

How did this happen? Microsoft uses safety bits to stop ActiveX objects from being used
when launched from sources outside the local machine. When code comes via an
external web page or a HTML email, objects used must be tagged as “Safe for Scripting.”
If not, a warning dialog is displayed to alert the user of the possible ramifications of
proceeding. Only objects of specific and limited use should carry this tag.
VBS.BubbleBoy used HTML email to execute a supposedly innocuous ActiveX object
that was marked safe for scripting. This object was intended to make Type Libraries for
objects. But it could do more. The Scriptlet.TypeLib object did not check that it was, in
fact, creating a type library. VBS.BubbleBoy used it to drop a .HTA (HTML
Application) file in the Start Up folder. Upon the next boot, this file would execute.
Figure 2 shows the relevant content of the email.

5 http://msdn.microsoft.com/scripting/default.htm?/scripting/scriptlets/doc/letcreatetypelib.htm

Mark Kennedy Page 14 of 27 6/27/2000

<html>
<body alink="#ffffff" bgcolor="#000000" link="#ffffff" text="#ffffff"
vlink="#ffffff">
<object classid="clsid:06290BD5-48AA-11D2-8432-006008C3FBFC"
id="Vandelay">
</object>
<script language="VBScript">
. . . BubbleBoy Worm Code . . .

 Figure 2 W97M.BubbleBoy’s use of Scriptlet.object

The email dropped its file into the C:\Windows\Start Menu\Programs\StartUp
directory. While this directory would not exist on all machines, it was sufficiently
generic. The script could not query the FSO to find the Windows directory because that
would have set off alarms. When executed from the Start Up folder, this file was
operating not from the Internet security zone, but rather from the Local security zone.
Microsoft clearly presumed if it is on your local machine, it can do what it wants without
any warnings. VBS.BubbleBoy could now make full use of the other objects so spread
itself.

VBS.BubbleBoy used the Scripting.FileSystemObject, the WScript.Shell, and the
Outlook object. This is a fairly typical mix for worms. Figure 3 shows the some of the
use of the WScript.Shell object. The owner and organization of the machine are changed
and it checks to see if it has run before. This changing of the owner/organization is the
only lasting effect of the worm.

Set Jerry = CreateObject("WScript.Shell")
Jerry.RegWrite "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\RegisteredOwner","BubbleBoy"

Figure 3 VBS.BubbleBoy’s use of the Scripting.FileSystemObject

Figure 4 shows the use of the FSO. It processes through itself and removes the
extraneous text added as a side effect of the Scriptlet.TypeLib object. It then transforms
the text for inclusion in the HTML of the email it will send to spread itself.

Set Jason = CreateObject("Scripting.FileSystemObject")
Set Michael = Jason.OpenTextFile(Replace(Replace(Replace(Location.PathName,"/",""),"%20"," "),"%FA","Ú"),1)

Figure 4 VBS.BubbleBoy’s usage of the Scripting.FileSystemObject

Lastly, Figure 5 shows the totally typical Outlook loop. The only variation here is that
one message is sent to everyone in the address book. Others have sent individual emails
to each entry in the address book (this mass mailing is what can crash mail servers).

Mark Kennedy Page 15 of 27 6/27/2000

Set Elaine = CreateObject("Outlook.Application")
Set Seinfeld = Elaine.GetNameSpace("MAPI")
For Each Cosmo In Seinfeld.AddressLists
If Cosmo.AddressEntries.Count <> 0 Then
Set Kramer = Elaine.CreateItem(0)
. . .
Kramer.Send
Figure 5 VBS.BubbleBoy’s usage of the Outlook.Application object.

VBS.Network

VBS.Network is a self-spreading non-destructive worm that has the ability to infect a
machine simply because it is connected to the Internet with a non-protected share.
Making use of the WScript.Network object, it attempts to map random IP addresses’ C
share onto J:. It then copies itself to various locations on that machine in hopes that
machine will continue to spread the infection.

Figure 6 shows the usage of the network object. A random sharename, in the form
\\w.x.y.z\c is created and the map attempted. Then all network drives are enumerated
looking for one that has that sharename. If one does, then the infection is spread to that
drive using the FSO, as shown in Figure 7.

set wshnetwork = wscript.createobject("wscript.network")
wshnetwork.mapnetworkdrive "j:", sharename
Figure 6 VBS.Network's usage of the WScript.Network object

Set fso = CreateObject("scripting.filesystemobject")
fso.copyfile "c:\network.vbs", "j:\"
Figure 7 VBS.Network's usage of the Scripting.FileSystemObject

The worm attempts to copy the file to seven different locations. It is also keeping track
of machines it has infected in a log on the host. The CreateObject function is flexible. It
takes a case-insensitive string. Because the string could be a variable assigned over
several statements, so it is not be possible to see which object was being created from a
static evaluation of the file.

Sometimes the brute force approach does work. Since its discovery in February, there
have been over 1500 submissions6. It is somewhat astounding that IP addresses with
unprotected shares named C would be found by random chance would be capable of
reaching these numbers.

6 Data provided by SARC submission database.

Mark Kennedy Page 16 of 27 6/27/2000

Wscript.Kak

Wscript.Kak is, perhaps, the most prevalent worm in the wild today. It, like
VBS.BubbleBoy, spreads merely by viewing an HTML email containing it. What is
different is that it hides at the end of every email its victim sends out. It accomplishes
this by replacing the Outlook Express (not Outlook!) signature file with a copy of itself.
This causes every HTML email sent from an infected machine to in turn infect a recipient
who views it as HTML. The worm sets itself to run twice during startup, once in the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run
key and once in the StartUp folder (if this folder is located where it thinks it is).

Figure 8 shows the unique way in which Wscript.Kak invokes the WScript.Shell object.
Because Wscript.Kak runs as an HTML Application (HTA), it utilizes the Object tag and
GUID (Globally Unique IDentifier) to invoke the object. This is equivalent to “var wsh =
new ActiveXObject(“WScript.Shell”);” statement in Java Script. Also unusual is the fact
it is written in JavaScript. Notice also the use of the Run method to set the registry. This
is interesting since the WScript.Shell object has a method to set the registry directly.

<object id='wsh' classid='clsid:F935DC22-1CF0-11D0-ADB9-00C04FD58A0B'>
</object>
<SCRIPT>
wsh.Run(wd+'Regedit.exe -s '+wd+'kak.reg');
Figure 8 Wscript.Kak's use of the WScript.Shell object

Figure 9 shows the use of the FSO. Here, again, we see functionality of the object
overlooked. “wd” is set to C:\Windows instead of interrogating the FSO’s
GetSpecialFolder method to return it. This mistake alone is likely to prevent the worm
from functioning on most Windows NT systems. But for all its shortcomings,
Wscript.Kak has remained a durable beast. It still exists in the wild, despite being
discovered in December of last year. In fact, the number of infections is growing with
141 submissions in March 2000, 4813 in May, and already 2641 by mid June7.

fs=new ActiveXObject('Scripting.FileSystemObject');
fl=fs.GetFolder(wd+'Applic~1\\Identities');
sbf=fl.SubFolders;
. . .
wd='C:\\Windows\\';

Figure 9 Wscript.Kak's use of the Scripting.FileSystemObject

7 Data provided by SARC submission database. April statistics are not available.

Mark Kennedy Page 17 of 27 6/27/2000

VBS.LoveLetter

Not since Melissa has a piece of malware garnered more press coverage. Spreading
faster than Melissa and crashing mail servers, VBS.LoveLetter captured the imagination
of the press. Within 24 hours it had spawned over 20 variants, one particularly nasty one
posing as a cleanup tool from Symantec. Claims of dollar damage followed, with one
estimate of up to $10 Billion8 being quoted. All of this, and the most innovative aspect of
the worm was the human engineering required to get people to launch an attachment.

Upon examination VBS.LoveLetter appears to have been pieced together from different
scripts to form a hodgepodge of functionality. Part worm, part trojan, part virus, mIRC
infection, password stealing, it packed a lot of functionality into one package. It made
larger use of the FSO than any previous worm.

As there is so much going on let us break it down and look at the different ways the FSO
is used. Figure 10 shows some of the standard behavior we have seen before. Because
the script is launched from an email program as an attachment it can not know the file
name it is running with. Script addresses this by providing the WScript.ScriptFullname
method to retrieve the name of the currently running script file. Then by using the FSO’s
ReadAll method it pulls in its source code for later replication. It uses the
GetSpecialFolder in dropping its copies so it will run on all systems.

Set fso = CreateObject("Scripting.FileSystemObject")
set file = fso.OpenTextFile(WScript.ScriptFullname,1)
vbscopy=file.ReadAll
Set dirwin = fso.GetSpecialFolder(0)
Figure 10 VBS.LoveLetter's standard use of the Scripting.FileSystemObject.

Not content with simple replication, VBS.LoveLetter set out to seed copies of itself on all
local and network drives. It did this by attempting to masquerade as some of the user’s
files. This constituted the destructive payload of the worm, since existing script files and
.JPG files were overwritten. Interestingly, .MP3 files were preserved by setting the
Hidden attribute bit. The Virus/Worm writer(s) did not mind overwriting porn but drew
the line at pirated music. This bit of overkill did make use of new elements of the FSO.
Drive enumeration, folder enumeration, and file enumeration allowed it to reach beyond
the current machine.

VBS.LoveLetter also used a MIRC script to spread an HTML version of the worm.
Where did this HTML version come from? With the FSO and native string processing
routines, it is able to create an HTML version of itself. Figure 11 is the routine to do this.
It is interesting to note this routine opens and reads the script again even though Figure
10 shows a copy of the file is already read in. This routine does show the powerful text

8 http://www.cnn.com/2000/ASIANOW/southeast/05/14/philippines.computer.ap/index.html

Mark Kennedy Page 18 of 27 6/27/2000

processing capabilities of VBScript. It also shows inefficient coding since the l1 variable
is set, then the ubound(lines) is called for the loop!

set fso=CreateObject("Scripting.FileSystemObject")
set c=fso.OpenTextFile(WScript.ScriptFullName,1)
lines=Split(c.ReadAll,vbcrlf)
l1=ubound(lines)
for n=0 to ubound(lines)
lines(n)=replace(lines(n),"'",chr(91)+chr(45)+chr(91))
lines(n)=replace(lines(n),"""",chr(93)+chr(45)+chr(93))
lines(n)=replace(lines(n),"\",chr(37)+chr(45)+chr(37))
. . .
set b=fso.CreateTextFile(dirsystem+"\LOVE-LETTER-FOR-YOU.HTM")
set d=fso.OpenTextFile(dirsystem+"\LOVE-LETTER-FOR-YOU.HTM",2)
d.write dt5

Figure 11 VBS.LoveLetter HTML creation routine

One aspect of VBS.LoveLetter remains: Spreading via the Outlook. Application object.
This is a textbook example of the process. In Figure 12 we see the sending of the email
with attachment. Because it sent copies to all entries in the address book (causing some
mail servers to fail) it did try to avoid this on subsequent runs by using the WScript.Shell
object to store, in the registry, the number of copies sent. If the address book contains
new entries then the whole book is enumerated again and a new batch of emails sent out.

set regedit=CreateObject("WScript.Shell")
set out=WScript.CreateObject("Outlook.Application")
set mapi=out.GetNameSpace("MAPI")
for ctrlists=1 to mapi.AddressLists.Count
. . .
male.Subject = "ILOVEYOU"
male.Body = vbcrlf&"kindly check the attached LOVELETTER coming from me."
. . .
regedit.RegWrite
"HKEY_CURRENT_USER\Software\Microsoft\WAB\"&malead,1,"REG_DWORD"
Figure 12 VBS.LoveLetter's use of the Outlook. Application and WScript.Shell objects.

VBS.LoveLetter Variants

At the time of this writing there have been 28 variants of the VBS.LoveLetter worm9
making it the most copied script-based worm in history. There are a number of factors
that led to this. It was heavily hyped in the media, as were the variants. It was widely
distributed, so millions of people had access to the source. And modifications to the
source were trivial to make. Some just translated the message text or the attachment

9 http://www.sarc.com/avcenter/venc/data/vbs.loveletter.a.html 6/13/00

Mark Kennedy Page 19 of 27 6/27/2000

name. As you can see in Figure 12 the message text and subject lines are just strings.
Absolutely no skill is required to change these and send it on.

VBS.NewLove – Destruction Has A New Name

The majority of the script-based worms did little or no damage. This changed with the
arrival of VBS.NewLove. The name is a bit of a misnomer since apart from its
distribution technique it had nothing to do with VBS.LoveLetter. It was a .VBS file, used
the same Outlook.Application techniques, and followed two weeks after VBS.LoveLetter
so the connection was made. But examination of the code shows clearly that it was no
variant. It is, in many ways, more sophisticated and innovative than VBS.LoveLetter. It
is interesting to note that while the WScript.Shell object is created, it is never used.
There is no need to use the registry to execute the worm on the next run – there will be no
next run. One is fatal.

VBS.NewLove is a polymorphic worm, varying not just the subject line and attachment
name but the physical code itself. The former two are done by reaching in to each
victim’s recent document list. The latter by altering the bogus comment lines generated
to change the attachment size and look. Due to a bug in this morphing code the file size
grows by approximately 100K for each revision of the worm allowing the generation of a
given infection to be determined. Figure 13 shows what starts as a fairly standard
initialization sequence. Then, however, we get the first portion of the polymorphism: the
enumeration of the Windows\Recent folder looking for a random name. Now the subject
line will be modified to something from the victim’s machine and is consequently
realistic. One flaw in this scheme, though, is the handling of the attachment’s extension.
A random extension is added, but the old extension is not removed. The combination is
then followed by the obligatory .VBS resulting in an unlikely conglomeration like “My
Document.doc.jpg.vbs.”

Set fso = CreateObject("Scripting.FileSystemObject")
Set MySelf = fso.GetFile(WScript.ScriptFullName)
Set MyFile = fso.OpenTextFile(WScript.ScriptFullName,1)
WindowsDir = fso.GetSpecialFolder(0)
Figure 13 VBS.NewLove's use of the Scripting.FileSystemObject

VBS.NewLove’s use of the Outlook.Application object is nearly identical to
VBS.LoveLetter. This is not surprising since all the steps are predictable and required.
Figure 14 contains this code.
 set Outlook=WScript.CreateObject("Outlook.Application")
 set MAPI=Outlook.GetNameSpace("MAPI")
Figure 14 VBS.NewLove's use of the Outlook.Application object.

Mark Kennedy Page 20 of 27 6/27/2000

VBS.Stages.A The New Worm On The Block

VBS.Stages.A demonstrates precisely why the scan only solution does not work.
Microsoft has so integrated scripting into Windows that scanning software is like the
proverbial Dutch boy plugging the many places in the dike. VBS.Stages.A uses a .SHS
file (Shell Scrap) as its point of entry. This extension was not being scanned or blocked
at the gateway allowing the files to enter. Then things got interesting.

Utilizing an undocumented feature of the operating system the file: Life_stages.txt.shs
would always appear as Life_stages.txt. This is because the Shell Scrap files have a
registry entry “NeverShowExt” which prevents Explorer from showing its extension.
By using the WScript.Shell object the worm sets another undocumented registry value
(AlwaysShowExt) to ensure that all .TXT files have their extensions show so things will
not look out of the ordinary. As a final touch the icon information for .SHS is updated to
that of .TXT so even the minor difference between these two file type’s icons are
removed.

Once running to worm masquerades as a joke file about the various stages of life for men
an women. It accomplishes this with the help of the Scripting.FileSystemObject and the
WScript.Shell it drops a real .TXT file and launches it. The result of this is an impressive
set of mimicry. The user sees Life_stages.txt in the folder. Launches it and sees
Life_stages.txt open in notepad or whatever program is associated with .TXT. While
reading the message the script is busy doing its malicious work. And what ambitious
work it is.

This worm runs the gamut of wormly tricks. It sends itself using the Outlook.Application
object, varying the subject line and marking the message for delete after send so as to
cover its tracks. It infects IRC programs and transmits itself via these programs. It
enumerates network drives and infects them.

The most devious of all it moves the Regedit.exe program into the C:\Recycled folder
(updating the association and icon for .REG). Because of the special way Explorer
handles the Recycled folder it is very difficult, if not impossible, for the average user to
unaided undo this trick. The worm is targeted only at Windows 9X machines since it
does not check that this folder exists (it does not under NT/2000).

Another new trick was the attempt to obfuscate the code. This took two forms. First,
string constants (although not all of them) were encrypted. This makes it difficult to
follow the code. It will might slow down variants, but not for very long. It is a step
above the VBS.LoveLetter form where anyone with a text editor could make a variant, no
experience necessary. But it is not difficult and this will be overcome. The second form
of obfuscation was in the coding style (or lack there of) itself. It is reminiscent of the old
Fortran days and their naming conventions. Some of the code does not even appear to be
VBScript as is shown in Figure 15. It is interesting to note that the method calls to the
objects stand out as islands of context against the noise of the code.

Mark Kennedy Page 21 of 27 6/27/2000

UQ OE(D("NzCpdvnfmst"))
UQ OE(D("Oqphqbnt"))
Set A=P.CreateTextFile(K(E(1),D("TDBMQFH-UAT")),True)
 . . .
A.Close
P.CopyFile K(E(1),D("TDBMQFH-
UAT")),K(Left(E(0),3)&D("QFDZDKFC"),D("QDZDKCAM-CBS"))
Figure 15 VBS. Stages.A obfuscation

A Firewall For Scripts

fire·wall (fīŕ wôl) n.
A fireproof wall used as a barrier to prevent the spread of fire.
Computer Science. Any of a number of security schemes that prevent
unauthorized users from gaining access to a computer network or
that monitor transfers of information to and from the network.

--Webster's New World Dictionary

Firewalls have been used in the networking context for decades. A similar approach can
be taken towards the scripting technology in Microsoft Windows operating systems. By
restricting access to the objects that serve as the source of their power we can render
these scripts powerless.

COM – The Plumbing That Makes It Work

As stated earlier, script gains power by the use of objects. COM, the Common Object
Model, is how these objects are activated. Dynamic Link Libraries (DLLs) provided a
level of abstraction between programs and libraries, allowing the underlying
implementation to change dynamically. However, this abstraction was limited. A
program needed to know where the DLL was located in order to load it. The program
needed fairly detailed information regarding the interface.

To further abstract functionality from implementation Microsoft came up with COM.
With COM, an application needed to know only an object’s name or identifier to make
use of it.

Since scripting is an interpreted language, to be able to programmatically speak with
these objects, the interpreter has to be able to determine what methods and properties a
given COM object supports on the fly–and be able to interface with them. The IDispatch
interface provides this supportGetIDsOfNames returns a list of names and IDs, and
parameter types. Those IDs are then passed into the Invoke procedure along with the
parameters to execute the method.

Mark Kennedy Page 22 of 27 6/27/2000

Only scripting access to the object is likely to go through the Invoke method, since the
amount of setup required is significant and direct calling to the methods is much easier
from a compiled language. Given this, we can be relatively certain that anyone calling an
object via the Invoke method is doing so from script. Couple this with the fact that
accessing the Scripting.FileSystemObject or the WScript.Shell object from an EXE
would be silly. Why call an object when you have the Win32 subsystem?

Now we have an area on which to focus our intervention. We have the spot to build our
firewall: Invoke.

Heuristic Approach To Firewall

All methods of all objects called via script must pass through that object’s Invoke
procedure. At this point we have complete knowledge, before the fact, of the call. We
know all the files or registry keys that are going to be manipulated. We know the
network shares being mapped. We know the folders being enumerated. We can use all
this information, as well as past history, to form a picture of what the script is doing.
Policy can be formulated to describe allowable activity. When a script attempts to do
anything that is outside the policy, it is blocked.

Microsoft’s security zones are an attempt to protect via policy. Scripts from the Internet
were allowed to do one thing; scripts running from the local machine had more
flexibility. VBS.BubbleBoy, Wscript.Kak and VBS.LoveLetter all circumvented this
policy by dropping a file onto the user’s local machine.

Some products exist now that scan the script source looking for the objects I have
discussed. This approach, while it would detect 100% of the malicious scripts seen to
date, suffers from two weaknesses. First, it will false positive on good scripts.
Corporations that desire to use script will suffer many complaints. This will lead to the
consequences discussed earlier.

Second, it can be fooled by a number of obfuscation techniques that are possible. Since
no Malware using these obfuscation techniques yet exists I will not go into detail as to
how this is accomplished. I will report that a programmer, who learned the scripting
language that same day, wrote a proof of concept script in several hours. This script used
all of the objects scanned for. Yet none of the text based scanners caught it.

The Script Encoder provided by Microsoft also defeats scanners. Moreover, many of the
attachment scanners fail as well since the extensions are VBE and JSE not VBS and JS.
This is likely the next phase these worms will take.

As the VBS.Stages.A worm showed us practically all files would need to be scanned for
script. Microsoft integrated the scripting so tightly with the OS that one can never be
sure which file extension next will be used to launch script.

Mark Kennedy Page 23 of 27 6/27/2000

One key advantage to a Heuristic based scanner is its ability to run at the gateway. It is
most desirable to intercept these worms on their first arrival where the cost of dealing
with them is lowest. Heuristic based systems can be written in a platform neutral manner
allowing them process the attachments on the mail server.

Run Time Approach To Firewall

The key advantage to a run time approach is that no matter what type of obfuscation is
employed the object must be instantiated before it can be used. It makes no difference
what route is taken. Moreover, since it is activated at run time the parameters can be
examined and to some degree intent can be deduced. This is true also for the vehicle the
Virus writer chooses to launch the script. It does not matter if the file was CHM, VBS,
HTA or SHS. For the script to do damage it must use one of the objects described in this
paper. When this happens the runtime firewall will be there to intercept the call.

When an object’s Invoke interface is intercepted, we can determine what method of the
object is being called and what parameters are being passed. These parameters will now
be in final form regardless of how the script derived them. Directory paths retrieved
directly from objects or pieced together from other strings will arrive as wholly formed
strings. For a file copy operation we will know both the source and the destination. We
can determine if a network drive mapping is by name or IP address.

Sophisticated rules can be established to govern acceptable behavior. This can reduce or
eliminate false positives. For example, you might allow a script to enumerate the address
book. You might allow a script to send mail. But you might prohibit a script that
attempts to do both. You might allow enumeration of the temporary folder but not other
key folders. You might allow network drive mappings if the name is in the form
\\MachineName while prohibiting the \\www.xxx.yyy.zzz nomenclature.

False Positives or The Software That Cried Wolf

A major impediment to acceptance of proactive software is it propensity for false
positives. Presenting users with false alarms can lead to two adverse effects. The first is
that the user will get annoyed and disable the software. Protection only works if it is
running at the time of attack. The second ill effect is users get into the habit of
dismissing the warning prompt. Since the number of real attacks is an extremely small
percentage of the number of intercepts, the odds are that when an alert comes up, it is not
real. After a number of these the user becomes anesthetized and reflexively answers the
prompt. When the real threat arrives, it is let through out of habit. Protection that is
dismissed at the time of attack is useless. Outlook and Outlook Express have warning
dialogs about executing attachments received via email. Every person who was struck by
VBS.LoveLetter answered, “Open it” to the question:

Mark Kennedy Page 24 of 27 6/27/2000

Figure 16 Outlook Express warning dialog ignored by thousands

It is easy to come up with a system that stops all malicious programs. It is easy to come
up with system that generates no false positives. The first stops everything and the
second stops nothing. Neither is a solution. A balance must be struck between a
sufficient degree of protection and intelligence that has a high degree of confidence that
when a prompt is presented a threat is present. Under these circumstances, a user will be
placed on sufficient guard to respond correctly to the prompt.

And what do we do about the corporate script that uses the same objects, many times in
the same ways, to accomplish legitimate work?

So What Do We Do About Good Scripts?

Microsoft provided scripting capability for a reason, though some will dispute that
decision. Script is extremely useful for performing tasks on machines. Administrators
who want to automate tasks can write scripts to perform nearly any action on their user’s
machines. One script rolled out to an organization can save countless hours.
Organizations come to rely on this mechanism. Removing it is simply not an option for
them.

The only difference between a good script and a bad script is intent. Intent is very
difficult to deduce. It is easy to imagine an administrator writing a script to manipulate
some files on a machine, set a registry key to indicate it has run, and then email a
confirmation. It is easy to imagine (since we have seen it) a worm that manipulates files,
sets some registry keys, and sends email. Indeed, a worm whose intention is merely to
spread may look much less suspicious than an administrative script. The line between
good and bad can be very faint.

Mark Kennedy Page 25 of 27 6/27/2000

Signatures and Scripts

Another way to address the false positive issue is to implement a signature system for
“good” scripts. This would allow a user or an administrator to certify that script be
allowed to access the dangerous objects. This system could be extended to use a
public/private key pair and hash to validate the script has not been altered.

A further extension would be to encrypt the script code and decrypt it on the fly. The
scripting engines themselves are COM objects and can be “intercepted” in the same way
as the other objects are. This technique serves a dual purpose by hiding code from the
end user. No longer is the script released in source form. Manipulation of the script is
not possible.

There may be resistance to this solution because it will require that scripts must be
submitted to a central authority for signing. Any modification would require
resubmission. This could become quite tedious and some users might resist it. However,
if an organization continues to utilize scripting and is struck again with an outside attack,
the security needs may eventually outweigh the convenience needs.

Conclusion

The continued release of script-based worms must inevitably lead to one of two ends.
Either corporations and users will be forced to completely remove scripting capabilities
in order to protect themselves, or a solution will be adopted that will prevent the bad
external scripts and allow the good internal scripts. The former is the easiest to
implement as most Draconian solutions are. This is tantamount to surrender. The
ramifications of such a solution may make it very costly, particularly in large managed
systems.

The Solonic route is to construct a scripting firewall that allows us to reap the benefits of
scripting, while protecting us from rogue elements. Protection and convenience always
exist in a Ying-Yang relationship. The firewall can be built in such a way to obtain the
desired balance. The implementations will change from site to site. This too is good. The
more variation that exists in organizations, the harder it is to devise broad based attacks.

It is possible to “roll your own” security with scripting. If one is very familiar with
Windows registry and the manner in which the different elements of the scripting engines
work together you can “rename” the dangerous objects. For instance, the
Scripting.FileSystemObject could be Scripting.MyFileSystemObject. Attempts to
instantiate the Scripting.FileSystemObject would fail because that object would not exist.
The same techniques could be applied to the scripting languages themselves, running
.MVB files instead of .VBS. These changes would not be without some degree of risk.
Windows 2000 particularly attempts to protect its files from tampering and may work to
counteract renaming attempts.

Mark Kennedy Page 26 of 27 6/27/2000

Several versions of the firewall technology are available today. They all provide
complete protection from the scripts we have seen to date. Some will work against future
attacks; others will fail. Innovation from both sides will continue. The basic architecture
of the scripting model, however, will inevitably tilt the balance towards the defenders. All
attackers must come through the same gates, and the defenders will ultimately hold the
keys.

Mark Kennedy Page 27 of 27 6/27/2000

Figures
Figure 1 Microsoft's sample code for enumerating the Outlook Addressbook................. 12
Figure 2 W97M.BubbleBoy’s use of Scriptlet.object ... 14
Figure 3 VBS.BubbleBoy’s use of the Scripting.FileSystemObject................................. 14
Figure 4 VBS.BubbleBoy’s usage of the Scripting.FileSystemObject 14
Figure 5 VBS.BubbleBoy’s usage of the Outlook.Application object. 15
Figure 6 VBS.Network's usage of the WScript.Network object 15
Figure 7 VBS.Network's usage of the Scripting.FileSystemObject.................................. 15
Figure 8 Wscript.Kak's use of the WScript.Shell object ... 16
Figure 9 Wscript.Kak's use of the Scripting.FileSystemObject .. 16
Figure 10 VBS.LoveLetter's standard use of the Scripting.FileSystemObject. 17
Figure 11 VBS.LoveLetter HTML creation routine ... 18
Figure 12 VBS.LoveLetter's use of the Outlook. Application and WScript.Shell objects.

... 18
Figure 13 VBS.NewLove's use of the Scripting.FileSystemObject.................................. 19
Figure 14 VBS.NewLove's use of the Outlook.Application object. 19
Figure 15 VBS. Stages.A obfuscation... 21
Figure 16 Outlook Express warning dialog ignored by thousands 24

Tables
Table 1 News Clips ... 4
Table 2 Partial Scripting.FileSystemObject Reference... 9
Table 3 Partial List of the WScript.Shell Object Methods.. 10
Table 4 Partial List of WScript.Network Object Methods.. 11
Table 5 Partial List of Scriptlet.Typelib Object's Methods... 12

	Script-Based Mobile Threats
	Table of Contents
	Table of Contents	2
	Windows Scripting Host: Myths and Realities
	Choose Your Playing Field

	Objects: The Source of the Power
	The Scripting.FileSystemObject
	
	Language Element

	The WScript.Shell Object
	The WScript.Network Object
	
	Language Element

	Outlook As Transportation Mechanism
	The Scriptlet.Typelib Object
	
	Language Element

	Case Studies
	VBS.BubbleBoy
	VBS.Network
	Wscript.Kak
	VBS.LoveLetter
	VBS.LoveLetter Variants

	VBS.NewLove – Destruction Has A New Name
	VBS.Stages.A The New Worm On The Block

	A Firewall For Scripts
	COM – The Plumbing That Makes It Work
	Heuristic Approach To Firewall
	Run Time Approach To Firewall
	False Positives or The Software That Cried Wolf
	So What Do We Do About Good Scripts?
	Signatures and Scripts

	Conclusion
	Figures
	Tables

